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Group Decision Making with Dispersion in the Analytic Hierarchy Process 

 

 

 

ABSTRACT 

With group judgments in the context of the Analytic Hierarchy Process (AHP) one would 

hope for broad consensus among the decision makers.  However, in practice this will not 

always be the case, and significant dispersion may exist among the judgments. Too much 

dispersion violates the principle of Pareto Optimality at the comparison level and/or 

matrix level, and if this happens, then the group may be homogenous in some 

comparisons and heterogeneous in others.  The question then arises as to what would be 

an appropriate aggregation scheme when a consensus cannot be reached and the decision 

makers are either unwilling or unable to revise their judgments.  In particular, the 

traditional aggregation via the geometric mean has been shown to be inappropriate in 

such situations.  In this paper, we propose a new method for aggregating judgments when 

the raw geometric mean cannot be used.  Our work is motivated by a supply chain 

problem of managing spare parts in the nuclear power generation sector and can be 

applied whenever the AHP is used with judgments from multiple decision makers.  The 

method makes use of principal components analysis (PCA) to combine the judgments 

into one aggregated value for each pairwise comparison.  We show that this approach is 

equivalent to using a weighted geometric mean with the weights obtained from the PCA.   

 



 3 

 
KEYWORDS:  Group decisions; Analytic Hierarchy Process; geometric mean; 

geometric dispersion; principal component analysis; weighted geometric 

mean 

1.  INTRODUCTION 

This paper addresses aggregation of multiple judgments in the context of the 

Analytic Hierarchy Process (AHP).  Specifically, it looks at the case where there is 

disagreement within the group of decision makers, and the members of the group are 

either unwilling or unable to revise their judgments.  The geometric mean (GM) of the 

pairwise comparisons of the group is the traditional means for aggregating group 

judgments; significant disagreement is manifested in the form of excessive dispersion 

around the GM.   The explicit consideration of dispersion in the context of the AHP is 

relatively new.  Saaty and Vargas (2007) introduced a dispersion test for group judgment 

aggregation to ensure that variability around the geometric mean is small enough so that 

all comparisons remain homogeneous.  In this paper we address situations where the test 

results indicate that this variability is not sufficiently small.  We develop a technique for 

aggregating pairwise comparisons through the use of the weighted geometric mean, with 

principal components analysis (PCA) being used to calculate weights for every decision 

maker.  Our methodology is motivated by a supply chain problem in the nuclear power 

generation sector, where group pairwise comparisons were elicited in the context of the 

AHP (Scala, Rajgopal, and Needy 2014). The PCA-based approach to aggregation that 

we develop is illustrated using data from this case study.  However, aggregation of group 

judgments is common in the AHP, and our work is relevant to any situation where the 
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conditions outlined above hold, or more generally, when we wish to give different 

weights to the different judges.   

We begin with a brief discussion of the AHP, especially in the context of group 

decision making.  We then discuss the dispersion test of Saaty and Vargas (2007) for 

aggregation of group judgments and motivate the need for the PCA-based approach for 

aggregation that is developed in this paper.  Section 3 provides the development and 

details of our approach; Section 4 further examines its properties and behavior; and 

Section 5 illustrates it with an example using the nuclear supply chain data discussed 

above. 

2. BACKGROUND AND LITERATURE 

2.1 The AHP, Group Decision Making, and the Dispersion Test 

The Analytic Hierarchy Process (AHP) is a structured methodology for decision-

making in a complex environment. It is a multiattribute approach based on three 

principles: decomposition, measurement and synthesis. Decomposition constructs a 

hierarchical network with the goal of the analysis at the top, criteria and subcriteria in the 

middle tiers, and a bottom tier of decision alternatives.  Measurements are in the form of 

pairwise comparisons between each set of criteria at a level (or alternatives at the lowest 

level) that are made with respect to the criteria at the next higher level or overall goal.  

Synthesis composes these comparisons and maps them onto a unidimensional scale for 

identifying the best alternative.   

As an example, consider a problem that has a three-level hierarchy, with the goal 

at the top, three criteria in the middle, and five decision alternatives at the bottom. Then a 

set of ten pairwise comparisons between the five alternatives would be conducted three 
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times; once each with respect to each of the three criteria.  A judgment resulting from a 

pairwise comparison belongs to an absolute ratio scale and indicates how much more 

important the first alternative is than the second, with respect to the criterion in question.  

These judgments satisfy the reciprocal property, i.e., if a is x times more preferred than 

b, then b should be 1/x times less preferred than a.  The pairwise comparisons are then 

synthesized through the use of linear algebra, and priorities for each alternative are 

computed.  The priorities are also normalized to sum to one. The alternative with the 

highest priority value is then said to be the preferred decision.  For further description of 

the AHP, the reader is referred to Saaty (1980; 1990; 2013).  A review of theoretical 

advancements in the AHP since its inception can be found in Ishizaka and Labib (2011a). 

Often it is appropriate to have more than one decision maker perform the pairwise 

comparisons in the AHP analysis.  This allows for multiple points of view and the 

knowledge of multiple subject matter experts to play a role in the final decision.  These 

multiple decision makers can work separately, be spread out over multiple geographic 

locations, or be in a centralized setting. Their analysis leads to individual judgments 

which can then be aggregated into group judgments in order to obtain a more robust set 

of comparisons.  Traditionally, for a given pairwise comparison, the GM of the 

judgments across all decision makers is computed and used as the aggregate judgment for 

the group.  It has been shown by Aczél and Saaty (1983) to be the only mathematically 

valid synthesis method for AHP.  In addition to homogeneity and unanimity, it also 

maintains the reciprocal property; all three properties are axioms of the AHP.  The GM is 

the mathematical equivalent of consensus if all judges are considered equally 

important/reliable, otherwise a weighted geometric mean (WGM) is reasonable (Aczel 
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and Alsina 1987).  There are many instances in the AHP literature where the geometric 

mean has been used to aggregate group judgments.  Examples include Armacost, 

Hosseini, and Pet-Edwards (1999), Liberatore and Nydick (1997), Lai, Wong, and 

Cheung (2002), and Wei, Chien, and Wang (2005).  However, none of these address the 

dispersion of judgments; a geometric mean was used to aggregate judgments without 

explicitly testing for dispersion. 

The AHP has been widely used as a multi-criteria decision-making technique.  

Examples include supplier selection in supply chains (Liu and Hai 2005; Ramanathan, 

2007), ERP system selection (Wei, Chien, and Wang 2005) and warehouse management 

(Korpela, Lehmusvaara, and Nisonen 2007).  In some cases, multiple decision makers are 

considered; in other cases, a single decision maker provides the comparisons.  A recent 

review of applications of AHP in operations management, including decisions related to 

operations strategy, process and product design, planning and scheduling resources, 

project management, and managing the supply chain, can be found in Subramanian and 

Ramanathan (2012). 

While the best case with group judgments is broad consensus among the decision 

makers, in practice this does not always occur.  Saaty and Vargas (2007) address 

aggregation in conditions where a consensus cannot be reached and significant dispersion 

exists among the judgments and show that the geometric mean cannot automatically be 

used in all instances.  Specifically, one needs to look at the amount of dispersion around 

the geometric mean of the judgments.  Too much dispersion violates the principle of 

Pareto Optimality at the comparison level and/or matrix level, which is crucial to the 
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AHP.  If this happens, the group may be homogenous in some comparisons and 

heterogeneous in others.   

In their paper, Saaty and Vargas (2007) develop a formal statistical test for 

dispersion, which is designed to determine if the observed variance in the set of group 

judgments for a given pairwise comparison is typical, given the group’s behavior.  The 

authors show that as the number of decision makers (m) increases, the geometric 

dispersion of the comparisons, a measure introduced by Saaty and Vargas (2005), tends 

to follow a gamma distribution whose shape and scale parameter values can be 

determined for any value of m. Thus, their statistical test determines the probability (p) of 

randomly observing a geometric dispersion of the group judgments that is less than or 

equal to the calculated (sample) value for the group.  If this probability is sufficiently 

small, then it would indicate that there is a high probability (1-p) of random geometric 

dispersions that are at least as large as the calculated value, thus implying that the 

observed dispersion is not unusually large and the geometric mean can be used.  

Conversely, if the p-value is large, the judgments are deemed to fail the dispersion test, 

and it would be inappropriate to use the geometric mean to aggregate the judgments 

across that particular pairwise comparison.  Further discussion and details on how to 

perform the dispersion test are given in Saaty and Vargas (2007). 

When dispersion is large and a set of pairwise comparisons cannot be aggregated 

directly, the literature (Basak 1988; Dyer and Forman 1992; Basak and Saaty 1993; Aczél 

and Saaty 1983; Aczél and Alsina 1987; Saaty and Vargas 2007) does not provide any 

formal alternative; rather, it directs the decision makers to “work together” to reach 

consensus, with judgments being revised or reconsidered.  If the decision makers choose 
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to revise their judgments, and the corresponding set of pairwise comparisons is 

reasonably consistent in the AHP, then those revised judgments may be substituted for 

the decision maker’s original judgments.  Another dispersion test should be performed, 

and if the test is passed, then the judgments can be aggregated.   

In practice though, this process of returning to the decision makers is often not 

feasible from a logistical or geographical standpoint.  While group meetings at the same 

place and time can perhaps be obviated due to technology advancements (as noted by 

Huang, Liao, and Lin, 2009), consensus is best achieved by having the decision makers 

collectively meet in the same location for a face to face discussion.  However, this might 

not be feasible.  Moreover, the decision makers may simply not want to revise their 

judgments, or the revised judgments might still not pass the dispersion test.  This could 

be possible in survey situations for example, where the decision makers are 

geographically dispersed or responding without group interaction.  In this case, the AHP 

literature has not addressed, to our knowledge, the question of how one should proceed 

with group judgment aggregation in light of the development of Saaty and Vargas’s 

(2007) dispersion test.   

This paper develops a new method for aggregating judgments when there is large 

geometric dispersion and the decision makers are either unwilling or unable to revise 

their judgments.  Our method makes use of principal components analysis (PCA) to 

combine the judgments into one aggregated value for each pairwise comparison by 

addressing the inherent variability among the different judges.  We show that this 

approach is equivalent to using a weighted geometric mean with the weights coming 

from the PCA.  The weighted geometric mean preserves the unanimity, homogeneity and 
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the reciprocal properties of the AHP (Aczél and Alsina 1987).  It also serves the role of 

giving different weights to the different judges in the group, because they are presumably 

not all consistent to the same degree.  This paper also addresses the general issue of 

objectively determining exactly how the decision makers’ weights for the weighted 

geometric mean should be selected (regardless of whether the judgments do or do not 

pass the dispersion test). 

2.2 Group Aggregation  

 Prior to the development of the dispersion test by Saaty and Vargas (2007), a 

geometric mean was used for aggregation regardless of the amount of dispersion between 

group judgments. However, to our knowledge, no objective alternatives have been 

proposed for situations when the dispersion test fails.  Indeed, as Ishizaka and Labib 

(2011a) note, a vast majority of papers in the AHP use the method as it was first 

described by Saaty and tend to ignore current developments.  Basak (1988), and Basak 

and Saaty (1993) examined a related problem in group aggregation.  In their work the 

decision makers are divided into separate groups.  The authors take a statistical approach, 

and present a method where the groups are tested for homogeneity to see if some of the 

groups can be combined.  This method assumes there are a large number of dispersed 

decision makers and uses maximum likelihood estimators with the likelihood ratio test.  It 

also assumes that the judgments of the decision makers are distributed lognormally, 

which may or may not be true for a given group of decision makers’ judgments.  

However, the authors do not address how the decision makers are initially grouped 

together.  More importantly, while their method identifies when groups can be pooled 

and when they cannot, it does not provide guidelines on what to do in the latter case.   



 10 

Huang, Liao, and Lin (2009) developed a group aggregation approach through 

preferential differences and ranks, but do not mention or utilize the dispersion test, even 

though the authors discuss divergent opinions.  Their method does not use the geometric 

mean for judgment aggregation, nor do they mathematically prove that their method does 

not violate the axioms of the AHP.  Escobar and Moreno-Jimenez (2007) developed an 

aggregation method that combines the AHP and Borda count methods.  They argue that 

their method compares with row geometric mean aggregation, but they too do not check 

for dispersion among their decision makers nor whether the aggregation is valid.  Arias-

Nicolás, Pérez, and Martín (2008) developed an aggregation method using logistic 

regression and group meetings.  However, they do not consider dispersion in their 

aggregation scheme.  Pedrycz and Song (2011) develop an aggregation method using 

granular matrices, and define consensus using the inconsistency ratio of each decision 

maker.  Like the other papers mentioned, they also do not explicitly consider dispersion.  

Xu and Yager (2010) develop a power ordered weighted geometric operator for 

aggregation.  The challenge with their results is that decision makers can be individually 

consistent but can be dispersed at the group level, and once again dispersion is not 

considered.  Finally, van den Honert (2001) proposed a group decision aggregation 

technique using a combination of AHP and the Simple Multi-Attribute Rating Technique 

(SMART) but this method also does not specifically address dispersion.  The author 

points out that a limitation of his work is that decision makers may form coalitions, which 

would reduce to equal weight for every decision maker in an extreme case.   

There has been some prior work in aggregation methods that assign weights to 

judges.  For example Cho and Cho (2008) assign weights based on the inconsistency ratio 
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using Taguchi’s loss function from quality control theory.  The authors examine the 

individual consistency of each decision maker and create an exponential evaluation 

reliability function to derive weights.  A test for the overall dispersion of judgments is not 

included in this method; in theory, the decision makers could be individually consistent 

but still dispersed when considered as a group.  Furthermore, the author notes that each 

group would have its own evaluation reliability function, which may or may not be 

exponential; methods and distributions for deriving other functions are not included in the 

paper.   

Another example is Ishizaka and Labib (2011b), who develop the Group Analytic 

Hierarchy Process Ordering (GAHPO) method.  In this approach, the stakeholders are 

incorporated into a level of the hierarchy.  The decision makers then develop weights for 

themselves by working through the pairwise comparisons of the hierarchy.  Each decision 

maker reserves a veto power to refute his/her weight as developed by the group.  

Dispersion of group judgments is not formally addressed in this method.   Clearly, the 

veto powers can introduce politics into the process, and the authors do not formally 

address how to deal with this issue or with a strong decision maker who does not agree 

with the majority.  Furthermore, scenarios may exist where the decision makers do not 

personally know each other or may not be very familiar with each other.  As a result, the 

quality of the pairwise comparisons of the decision maker may suffer; without knowledge 

of each decision maker, his/her value or relevance may not be properly reflected.  The 

authors note that voting methods or methods where every decision maker evaluates the 

same hierarchy are best for synergistic groups and not for cases where the group is a 

collection of strong individual opinions. 
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A third example is a paper by van den Honert (1998) which uses the 

multiplicative AHP with means and variances of pairwise comparisons for group 

preference and does not consider dispersion.  The author discusses concerns with group 

preference in that once judgments are aggregated, the group may not be pleased with the 

overall result, resulting in uncertainty.  However, the concern for uncertainty may be 

avoided with a test for dispersion; if the judgments are dispersed, they should be revised 

or addressed instead of declaring uncertainty.  Furthermore, Vargas (1997) presents a 

counterexample to the validity of the multiplicative AHP and raises issues with both its 

eigenvector and aggregation of priorities versus judgments in a group setting.  Therefore, 

we argue that the multiplicative AHP is not the best approach to use. 

2.3 Pareto Optimality 

 Fundamentally, the principle of Pareto Optimality implies that if all individuals 

prefer A to B then so should the group.  The principle is violated when the group may be 

homogeneous in some paired comparisons and heterogeneous in others. Ramanathan and 

Ganesh (1994) explored two methods of combining judgments in hierarchies, but both 

methods violated Pareto Optimality for pairwise comparisons, and as a result, the authors 

incorrectly conclude that the geometric mean violates Pareto Optimality.  Forman and 

Peniwati (1998) argue that this claim is irrelevant, because in group aggregation, we are 

no longer concerned with individual priorities.  The authors also note that in group 

decision making, for the good of the group the experts give up their preferences, with the 

group becoming a new individual.  Furthermore, each decision maker may not provide 

pairwise comparisons for each portion of the AHP hierarchy.  Van den Honert and 

Lootsma (1996) show that group judgment aggregation does satisfy Pareto Optimality 
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and that Ramanathan and Ganesh’s proposition is not practical.  Ishizaka and Labib 

(2011a) note that the concept of dispersion further downplays Ramanathan and Ganesh’s 

(1994) claims, arguing that too much dispersion implies a heterogeneous group and 

further work with the decision makers is needed to achieve homogeneity and consensus 

among the group.  Saaty and Vargas (2012) prove that a social welfare function exists 

that satisfies multiple conditions including Pareto Optimality when using the geometric 

mean to combine individual judgments, further challenging earlier claims.  As Saaty 

(2013) notes, this proof justifies mathematically that individuals can combine judgments 

into a representative group judgment.  He also argues that a mathematical way of 

combining judgments is preferable to arbitrarily declaring consensus.   

This paper seeks to provide another step in group aggregation research, when the 

AHP is applied to a decision-making problem.  Specifically we address the case where 

decision makers are dispersed and unwilling or unable to revise their judgments, and 

when the dispersion test outcome is not favorable.  The proposed approach does not 

violate the axioms of the AHP, as it generalizes to aggregation through a weighted 

geometric mean.  In the broader context of group aggregation, it also provides a method 

for determining weights for decision makers when using a weighted geometric mean.  

Next, we demonstrate this method. 

3. APPROACH  

We begin this section with a brief background discussion of PCA, and then 

discuss how it both relates to the AHP and yields a methodology for synthesizing 

judgments.  We also provide an empirical study that shows that the PCA-based approach 
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for aggregation generalizes to the GM approach when the decision makers are not 

dispersed. 

3.1 Overview of PCA 

Principal components analysis is a statistical technique that uses an orthogonal 

linear transformation to transform a set of (most likely correlated) variables into a smaller 

set of uncorrelated variables (Dunteman 1989).  In essence, PCA attempts to reduce the 

dimensionality of a data set by distilling it down to the components that capture the 

majority of the variability associated with the original data set.  The procedure addresses 

the variance/covariance structure of the data and uses the eigenvectors of the covariance 

matrix to transform the data to a new coordinate system in which the original data is 

rotated on its axes such that maximum variance of any projection of the data lies along 

the first coordinate (the first principal component), the second largest variance along the 

second coordinate (the second principal component), and so on.  Thus, if we start with a 

set of n observations in m variables, PCA reduces the original data set to n observations 

on k components that capture a large proportion of the total variance in the original data 

set. Principal components are used for data reduction and interpretation and are typically 

employed in large analyses, revealing relationships in the data that might not originally 

be evident.  The method has been widely applied in practice, including areas such as 

biology, medicine, chemistry, and geology (Dunteman 1989).  Further details on 

principal components can be found in Johnson and Wichern (2007), Anderson (2003), 

Jolliffe (2002), and Dunteman (1989).  

3.2 Principal Components and the AHP 
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 Now consider group judgments in the context of the AHP.   Each of the n 

pairwise comparisons made by the set of decision makers may be viewed as analogous to 

an observation in PCA, and each of the m decision makers may be viewed as a variable or 

as one dimension of the data set.  The decision makers themselves are individually 

different, and thus one would expect to see some variability in the numerical scores 

assigned by them to a given comparison. The objective of the principal components 

analysis would then be to determine the (uncorrelated) principal components that capture 

the majority of the variability among the judges. 

Our general approach is as follows: we first replace all of the original comparison 

values with their logarithms.  This converts the discrete values that comprise the 

Fundamental Scale of Absolute Numbers (Saaty, 1980; 1990) to continuous values, 

facilitating principal component calculation.  We then convert back to the ratio scale at 

the end of our method.  This also reduces the problem to finding decision maker weights 

for use with a weighted GM.  To see this, suppose decision maker k is assigned a weight 

wk where wkÎ(0,1) and åk=1..m (wk)=1.  Further let  represent the value from Saaty’s 

Fundamental Scale of Absolute Numbers (Saaty 1980; 1990) chosen by decision maker k 

in comparing factor i with factor j. Let us also denote by aij the weighted geometric mean 

of these values across all of the judges, i.e.,  .  First, note that if aij is 

used as the final synthesized value for the comparison between factors i and j, then as 

desired in the AHP,   Now suppose that we replace  

with log(   If we compute the weighted arithmetic mean of these values across the m 

decision makers we obtain =  and the 
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corresponding value in the transposed entry is equal to .   Exponentiating 

these values will thus yield synthesized values that are identical to those from the 

weighted GM.   

Therefore, we compute the principal components for the original matrix of 

comparisons (in their logarithms), and restrict ourselves to the first principal component, 

which is the eigenvector corresponding to the largest eigenvalue of the corresponding 

covariance matrix.  By definition, this m-vector captures the majority of the variance, and 

we normalize and use this as the vector of weights to develop final aggregated values for 

the numerical comparisons, which in turn are then used to develop the final set of 

priorities in the AHP.  Note that this does not involve any distributional assumptions, so 

the approach may be used with any dispersed data set.  The approach may also be viewed 

as a way of obtaining an appropriate set of weights when developing the priority vector in 

the context of group aggregation via the weighted geometric mean regardless if the 

pairwise comparisons are dispersed or not.  In the next section, we illustrate the PCA-

based approach with a numerical example from an actual application. We then further 

examine this approach by studying how the weights behave with respect to the magnitude 

of the disagreement among the judges, and show that as the dispersions tend to zero, the 

weights from the PCA tend to equal values for all the judges, so that the weighted GM 

converges to the regular (unweighted or raw) GM.   

 

4.0   ILLUSTRATION OF PROCEDURE 

We illustrate how the approach works using an example from the nuclear power 

generation sector. The data relates to the development of a methodology for managing 
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spare parts at a Fortune 200 company operating in this sector, which was the motivation 

behind the development of this approach (Scala, Rajgopal, and Needy, 2014).  The AHP 

has been used to classify inventory and spare parts in other situations as well; examples 

of such studies include Molenaers et al. (2012) and Lolli, Ishizaka, and Gamberini 

(2014).  One phase of our study involved collecting data from subject matter experts 

(SMEs) regarding the current spare parts ordering process.  The process was mapped in 

an influence diagram, which included 34 influences.  These influences were arranged into 

seven focus areas: timeliness of work order, part failure, vendor availability, part usage in 

plant, preventive maintenance schedule, outage usage, and cost consequences.  SMEs 

were asked to perform pairwise comparisons of the aspects of the existing system by 

focus area; each SME only provided comparisons for areas in which he/she is an expert.  

In total, and to capture a holistic data set, twenty-five SMEs were asked to perform the 

pairwise comparisons, with five SMEs assigned to each set of influences.  SMEs from 

more than one company location (generation plants and corporate offices) were used 

because each facility handles spares within its plant or office.  In the larger study, the 

authors had the aim of developing a spares methodology to implement at all of the 

company’s plants.  Hence, a variety of inputs from multiple SMEs from various 

backgrounds and focus areas were included.  Employee knowledge was essential to the 

larger model.  One employee’s perspective was simply not enough due to company sub-

cultures and the systematic nature of the spare parts process.  The SMEs were 

geographically dispersed across three of the company’s nuclear generation plants and its 

corporate offices; these facilities are located over two states.  Various impediments 

prevented the SMEs from gathering in one central location, so judgments were elicited 
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individually, which also helped to eliminate bias from group-think or an overly assertive 

SME.  Furthermore, not all SMEs participated in the pairwise comparisons for every set, 

as expertise varied among the decision makers.  A full discussion of the elicitation 

process and influence sets, including pairwise comparison data for all SMEs, can be 

found in Scala (2011) and Scala, Needy, and Rajgopal (2010).  

For any pairwise comparison, the numerical value assigned was allowed to take 

on one of nine values (1/9, 1/7, 1/5, 1/3, 1, 3, 5, 7, 9) from Saaty’s Fundamental Scale of 

Absolute Numbers traditionally used in the AHP (Saaty, 1980; 1990).  The scale is 

monotonic in the sense of strength of preference for one alternative over the other, so that 

a value of 1/9 would represent one end of the opinion spectrum and a value of 9 the other 

end.  Thus if the decision makers are consistent they would assign values for the 

comparison that are close to each other, while a divergence of opinion would result in 

values that cover a wider range.   

  To illustrate our approach, consider the following AHP judgments that were 

elicited from all five SMEs for one set of influences that related to the preventive 

maintenance schedule at the company (Scala 2011).  There were f=4 alternatives being 

compared against each other, and the 5-vector in row i and column j (i¹j) in the matrix 

below represents the numerical values assigned by the five judges to the comparison 

between alternatives i and j, (for each of a total of 6 pairwise comparisons): 
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The dispersion test of Saaty and Vargas was performed on each group of five 

pairwise comparison judgments above.  All six groups failed the test due to excessive 

dispersion.  Each of the decision makers was contacted via follow-up individual 

interviews, when a few judgments were revised but most were not.  Most SMEs did not 

want to revise their judgments because they felt that what was initially provided was an 

accurate assessment of the spare parts process at their respective company location.  To 

avoid bias and data integrity issues, the decision makers were not forced to revise their 

judgments; we were seeking a more accurate representation of the current process as data 

inputs to the full study.  The revised pairwise comparison matrix for the preventive 

maintenance influences is shown below:  

 

The dispersion test was rerun, and once again all sets of comparisons failed the test. At 

this stage we treated the comparison matrix as final and our PCA-based approach to 

aggregation was used.  We start the aggregation with the following “comparison matrix” 

A obtained from the data above; each row denotes one specific pairwise comparison and 

each column denotes one specific judge: 

A =  
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We define the transformed matrix X, each entry of which is the logarithm of the 

corresponding entry in A.  Without going through the details of the computations, it may 

be verified using any standard computational software package that the first principal 

component (the unit eigenvector corresponding to the largest eigenvalue of the 

covariance matrix for X) is the vector [0.5427  0.0446  0.7424  0.0701  0.3840] T.  Note 

that this vector has its l-2 norm equal to 1; because the AHP approach uses the l-1 norm, 

we simply square each element (so that they sum to 1.0) to obtain the final vector of 

“weights” to be given to each judge as w = [0.2946  0.0020  0.5511  0.0049  0.1475]T.   It 

may also be noted that the vector of sample variances of the logarithms of the judgments 

by the five decision makers is given by [1.5442  0.0783  1.6912  0.4204  0.4868]T; 

normalizing this yields the vector [0.3658  0.0185  0.4007  0.0996  0.1153]T.  Comparing 

this with the vector w shows that while the weights are not the same, the relative 

magnitudes bear some resemblance (e.g., judges 2 and 4 get low weights, while judge 3 

gets the highest weight).  Furthermore, company leadership reacted positively to the 

weights for each judge.  Not all judges knew each other well, so it is difficult to assess 

individual satisfaction for each judge.  However, leadership had a high level 

understanding of each location and its corresponding workforce. 

Given the vector of weights w, the aggregated value for each comparison would 

be the weighted geometric mean of the original judgments and is given by z = [3.3746  

0.7673 0.2581  0.4857  0.4292  0.2034].  (Alternatively we could find z’=Xw, and then 

use z=exp(z’) to get these same final values.)  Thus the set of synthesized judgments for 

computing the AHP priorities is as shown below in Table 1:   

Insert Table 1 Here 



 21 

Table 1: Matrix of synthesized judgments for computing AHP priorities 

The row and column labels in Table 1 reference the alternatives or criteria that are being 

pairwise compared.  For example, position (1,2) in the table is the synthesized judgment 

for the pairwise comparison between the first and second attribute or criterion.  Using the 

approach of Saaty (1980; 1990), the (normalized) principal right eigenvector for this 

matrix yields the final priority vector for the AHP corresponding to the four factors as vP 

= [0.3490  0.0061  0.6292  0.0157]T for the AHP. 

Note that if instead, we had used the raw geometric mean of the five judgments 

for each pairwise comparison, we obtain the vector z = [1.9037 0.8586 0.4592 0.7248 

0.4217 0.4217]T so that the synthesized symmetric matrix for computing the priorities 

would yield  Table 2: 

Insert Table 2 here 

Table 2: Matrix of synthesized judgments for computing AHP priorities using the GM 

This yields the priority vector vG= [0.3743  0.1475  0.4353  0.0429]T.   

 The less dispersion there is among the judges, the closer these two different 

vectors vG and vP are to each other.  For instance, suppose the original comparison matrix 

was given by 

A’ =  

Several of the numbers were altered to capture a situation where there is still some 

variability in A’ but significantly less than in the original matrix A.  In this case, the 

weights using the PCA approach are given by [0.1705  0.1480  0.2209  0.2168  0.2438]T 
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leading to the synthesized judgments [4.2493  0.2114  0.1711  0.2978  0.2501  0.2157].   

On the other hand the raw GM yields the synthesized judgment [4.0760  0.2071  0.1748  

0.3010  0.2453 0.2215]. The two corresponding final priority vectors are given by vP = 

[0.6165  0.0649 0.3096  0.0090]T for the PCA based approach and  vG= [0.6199  0.0773  

0.2939  0.0090]T for the approach based on the raw GM.  As one can observe, these are 

very similar to each other.  In particular, consider the limiting case when there is no 

dispersion and the decision makers are perfectly consistent in their judgments, so that 

each n-dimensional column vector in A is identical (say y) with all judges assigning 

exactly the same scores to any comparison.  In this situation the first principal component 

is a vector w of dimension m, with each entry equal to 1/m, i.e., each of the m judges is 

assigned the same weight of 1/m.  Thus in this case the weighted GM is identical to the 

raw GM, and the final priority vectors vP and vG are identical. 

5.0 LIMITING BEHAVIOR OF PCA-BASED APPROACH 

In this section we describe an empirical study, with the objective of understanding 

the limiting behavior of the PCA based approach for aggregation as diversity of opinion 

among the decision makers decreases and to demonstrate that it converges uniformly to 

aggregation by the GM.  The data for the study is generated from a simulation model.  

Before describing the range of parameter values studied, we first describe how “diversity 

of opinion” (i.e., dispersion) is captured by the study.  Suppose we number each of the 

nine values on Saaty’s Fundamental Scale as a “unit” as shown in Table 3 below: 

Insert Table 3 here 

Table 3: Correspondence of units to Saaty’s Fundamental Scale of Absolute Numbers 
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To capture variation among the decision makers, we then define the “scale 

spread” (d) as the range of units covered by the values assigned by different decision 

makers in the group.   So, for example, if d=2 all decision makers chose one of two 

adjacent units on the scale.  On the other hand, if d=5 they all chose values from among a 

set of 5 consecutive units on the scale (e.g., {1/7, 1/5, 1/3, 1, 3} or {1/3, 1, 3, 5, 7} or {1, 

3, 5, 7, 9}). In the two extreme cases, if d=1, then all decision makers are perfectly 

consistent and chose the same value, while if d=9, their values ranged across the entire 

spectrum of possible values (from 1/9 through 9).  In order to conduct our study we vary 

three different parameters as follows:  

a. The number of decision makers: m=4,5,6,7,8,10,15,25,50 

b. The number of factors/alternatives being compared with each other: f=3,4,5,6,7,8, 

and 

c. The scale spread d=2,3,4,5,6,7,8,9 

Note that if f alternatives are being compared with each other, the actual number 

of pairwise comparisons being made is n=f(f-1)/2; this would also be the number of rows 

in a  “comparison matrix” A.  The comparison matrix is constructed with each row 

corresponding to a specific pairwise comparison and each column corresponding to a 

decision maker in the group.  The objective is to study the difference between the priority 

vectors from a PCA-based weighted geometric mean approach and the raw GM-based 

approach on the same set of judgments when there are different levels of disagreement 

among the decision makers (as measured by d), across different levels of m and f.   Of 

course, if d=1 the priority vectors are always identical.  
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For a given combination of values for m, f and d, a set of m judgment values from 

Table 3 was randomly generated for each of the n=f(f-1)/2 pairwise comparisons, while 

ensuring that these values always range over a set of d adjacent units on the scale.  It was 

also ensured that both extremes in the range were definitely selected.  The specific set of 

units spanned for each individual comparison were also randomly selected and could be 

different (e.g., with d=3, for comparing A vs. B the units may correspond to scale values 

{3, 5, 7} while for comparing C vs. D the values might be {1/3, 1, 3}).  The 

corresponding priority vectors using the PCA approach (vP) and the GM approach (vG) 

were then computed.  The vector vP was computed using the approach as described in 

Section 3.2, and vG was computed via the traditional geometric mean AHP judgment 

aggregation approach.  A full factorial experiment yields a total of |m|×|f|×|d|= 9*6*8= 432 

unique combinations, and for each combination we ran 10,000 simulations and computed 

the mean and standard deviation of the distances between the two vectors across these 

replicates.  Note that in each replicate there are n=f(f-1)/2 separate pairwise comparisons. 

Before comparing vectors vP and vG, we first examine the circumstances under 

which a raw GM based approach for aggregating group judgments would be 

inappropriate.  To see this, for each combination of inputs (m, f and d), we also computed 

the percentage of the (10,000*n) comparisons in the simulation where the GM-based 

approach would fail the dispersion test of Saaty and Vargas (2007) at a p value of 0.05; 

suppose we use amfd  to denote this percentage. First, note that once the m and d are fixed, 

f only determines how many comparisons are being made; the individual comparisons are 

similar in that they have the same spread across the same number of judges. Thus we 

average the percentages across all values of f for a given combination of m and d, i.e., we 
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compute am·d = {åf=3,…,8amfd} ÷ 6.    Based on this, Table 4 provides simulated estimates 

for each m, the probability (am·d)/100 that the dispersion test fails when there is a scale 

spread of d.  Combinations that yield a value of 0.05 or lower are shaded.  

Insert Table 4 here 

Table 4: The probability the dispersion test fails with a scale spread of d 

Figure 1 plots the results to better visualize them, and each line represents a given 

value of m. As the results indicate, when there are more decision makers the test tolerates 

more divergence of opinion amongst them.  When m is very large (25 or 50) a scale 

spread of even 4 or 5 units seems tolerable, while with very few of judges (m= 4 or 5) 

even a small spread of 3 units might be unacceptable.  In general, these results suggest 

the levels of disagreement that would invalidate the use of the unweighted GM with 

different numbers of decision makers.  This extends the work of Saaty and Vargas 

(2007), as they do not provide formal guidance (nor does the literature) on how many sets 

of pairwise comparisons must fail before the unweighted geometric mean is no longer 

appropriate. 

 

Insert Figure 1 here 

Fig. 1 Plot of the probability the dispersion test fails with a scale spread of d 

In comparing the vectors vP and vG it is natural to use some sort of a distance 

measure.  However, it should be kept in mind that the priority vectors do not have the 

same dimension; they belong to  (and have an l-1 norm equal to 1).  Therefore a 

distance measure (d) between the two vectors should account for the size of f.  We use the 
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following adjusted version of the l -∞ norm: d =   The denominator 

represents the average priority value for a set of f factors, so that d represents the distance 

constituted by the l -∞ norm as a percentage of this average.   

Figure 2 displays a series of plots, one for each value of f. In each graph we plot 

the distance d as a function of d  for each of the nine values of m that we considered.  To 

maintain visual consistency, all plots have the same scale.  It can be observed that as d 

approaches 1 (i.e., we approach complete consistency among the judges) the distance d 

converges uniformly to zero in all cases. Furthermore, for any fixed value of f and d, the 

distance between vG and vP is always smaller when the number of judges is larger. This is 

intuitive; for the same level of dispersion, the effect of one individual judge is less 

pronounced with more judges.  Second, for any fixed f, differences between vG and vP 

generally do not depend strongly on the number of judges when there is relatively less 

dispersion (say, d=4 or lower).  However, the difference between the priority vectors as a 

function of m becomes more pronounced when the dispersion is relatively large (say, d=6 

or higher). Finally, the distance between the priority vectors rises monotonically with 

dispersion in most cases.   

Insert Figure 2 here 

Fig. 2 Distance d as a function of d for each value of f 

In summary, the results of the simulation show that the final priority vector found 

by aggregating the dispersed judgments using the PCA-based method, with weights for 

every decision maker found via the first principal component vector, generalizes to the 

priority vector found when the judgments are aggregated using a traditional geometric 

mean with the decision makers not dispersed.  This shows the PCA-based approach is no 
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different from the approach using the raw or unweighted GM with the added capability of 

identifying an approach to the aggregation of judgments if the dispersion test does not 

pass.  Furthermore, because the PCA-approach generalizes to the raw GM, it can be used 

to find weights for decision makers any time a weighted geometric mean is desired.   

6.0 SUMMARY 

This paper addresses the issue of synthesizing the AHP judgments of multiple 

decision makers when the judgments do not pass the dispersion test and the decision 

makers are unwilling or unable to revise their judgments.  In these cases, significant 

diversity of opinion exists amongst the decision makers. Prior work on this topic has 

focused mainly on identifying such situations but provides no guidance on how to deal 

with this issue, other than asking the decision makers to reconsider their judgments.  

Simply discarding a judgment that is not consistent with the majority is also not a 

satisfactory solution because a diverse set of perspectives may need to be obtained, as 

was the case in the study that motivated this research.  While judgments of all the 

decision makers should be considered, there is no reason in general why all decision 

makers need be given the same degree of importance when synthesizing their judgments.  

This leads to the natural choice of a weighted geometric mean, which preserves the 

axioms that are critical to the AHP.  However, the research literature does not provide 

any guidance on how the weights can be selected in an objective fashion, especially in the 

case of excessive dispersion.  Motivated by a supply chain problem, we propose an 

aggregation approach based on PCA that treats the judges as variables in a set of 

comparisons and uses the first principal component (which captures the maximum 

amount of variability) to arrive at weights for each decision maker.  The use of PCA 
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flushes out importance and relevance of decision makers by accounting for dispersion.  A 

detailed simulation provided guidance on when this approach might be preferred over a 

simple geometric mean and showed that the final priority vector from this approach 

converges uniformly to the one obtained from a simple geometric mean as the diversity 

of opinion among the judges tends to zero. 
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Group	Decision	Making	with	Dispersion	in	the	Analytic	Hierarchy	Process	

Table	1	

	

 1 2 3 4 

1 1 3.3746     0.7673 0.2581 

2 1/3.3746 1 0.4857 0.4292 

3 1/0.7673 1/0.4857 1 0.2034 

4 1/0.2581 1/0.4292 1/0.2034 1 

Table	1:	Matrix	of	synthesized	judgments	for	computing	AHP	priorities	

	



Group	Decision	Making	with	Dispersion	in	the	Analytic	Hierarchy	Process	

Table	2	

	

 1 2 3 4 

1 1 1.9037     0.8586 0.4592 

2 1/1.9037 1 0.7248 0.4217 

3 1/0.8586 1/0.7248 1 0.4217 

4 1/0.4592 1/0.4217 1/0.4217 1 

Table	2:	Matrix	of	synthesized	judgments	for	computing	AHP	priorities	using	the	GM	

	



Group	Decision	Making	with	Dispersion	in	the	Analytic	Hierarchy	Process	

Table	3	

	

Unit Value 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1/9 

1/7 

1/5 

1/3 

1 

3 

5 

7 

9 

Table	3:	Correspondence	of	units	to	Saaty’s	Fundamental	Scale	of	Absolute	Numbers	

	



Group	Decision	Making	with	Dispersion	in	the	Analytic	Hierarchy	Process	

Table	4	

	

d 
No. of judges (m) 

4 5 6 7 8 10 15 25 50 
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.133 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

3 0.421 0.327 0.217 0.125 0.102 0.060 0.008 0.001 0.000 

4 0.758 0.584 0.497 0.407 0.359 0.252 0.139 0.033 0.008 

5 1.000 0.937 0.818 0.747 0.672 0.546 0.405 0.241 0.072 

6 1.000 1.000 0.977 0.936 0.927 0.874 0.761 0.589 0.395 

7 1.000 1.000 0.997 0.980 0.974 0.964 0.940 0.905 0.838 

8 1.000 1.000 1.000 0.993 0.987 0.986 0.985 0.986 0.991 

9 1.000 1.000 1.000 0.997 0.993 0.992 0.995 0.998 1.000 

Table	4:	The	probability	the	dispersion	test	fails	with	a	scale	spread	of	d	

	



Group	Decision	Making	with	Dispersion	in	the	Analytic	Hierarchy	Process	

Figure	1	

	

	

Fig.	1	Plot	of	the	probability	the	dispersion	test	fails	with	a	scale	spread	of	d	
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Group	Decision	Making	with	Dispersion	in	the	Analytic	Hierarchy	Process:	Figure	2	

  

  

  

Fig.	2	Distance	d	as	a	function	of	d for	each	value	of	f	
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