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Title:   

Managing Nuclear Spare Parts Inventories: A Data-Driven Methodology 

Abstract:  

This paper presents a methodology for developing a spare parts inventory management 

system with a focus on the nuclear power sector. Often, demand for spare parts is highly 

intermittent and cannot be accurately forecasted through traditional methods. Examples include 

nuclear power generation equipment, ground space systems, and aircraft engine parts. We take a 

data-driven engineering management approach and develop a four-step methodology for spare 

parts management in such environments. These steps comprise an influence diagram for 

identifying relevant factors, weighting of influences through the Analytic Hierarchy Process, 

grouping parts according to inventory criticality indices, and the development of base stock 

inventory policies for each group. This approach allows the system to be actively managed within 

a continuous improvement framework through employee engagement and input, and mathematical 

assumptions are not made in the models. To our knowledge, no such integrated, comprehensive 

methodology for spare parts has been developed. The techniques employed in this research can be 

effectively used together to holistically manage the entire spare parts process, or they may be used 

separately to manage portions of the process. This paper provides an overview of the methodology, 

and the entire approach is illustrated via a test bed nuclear power generation facility. 

Managerial Relevance Statement: 
This research presents a methodology for spare parts management under conditions of 

intermittent demand and lack of detailed statistical data on equipment failure rates. No 

mathematical assumptions are made, which allows for the approach to be generalized to other data 

sets and conditions. Personnel with or without technical backgrounds can understand and 

participate in the model development, which increases corporate buy-in and encourages successful 
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implementation. The methodology balances the risk of lost revenues with costs, while not 

compromising on safety, which is a necessity in a deregulated electric utility generation 

environment. It has been applied to spare parts at a nuclear power plant, and the outcomes support 

efficiency and cost effective inventory management. Managers at the test bed facility estimate that 

application of the approach would lead to a reduction of 18% of the nuclear generation spares 

inventory.   

Introduction and Background 

This research addresses the problem of effectively managing spare parts inventory in the context of the 

nuclear electric utility industry. This problem has several unique characteristics that make it difficult, if not impossible, 

to directly apply traditional inventory control methods, and we therefore develop a systematic four-step methodology 

that is designed to address these characteristics. The entire approach is illustrated via a case study from a nuclear 

power generation facility. Examples of other classes of spare parts that also exhibit these characteristics include ground 

space systems (antennas, etc.) and aircraft engine parts.  

Operational spare parts do not usually directly service customers, and therefore excess inventory is 

undesirable from a management perspective. On the other hand, a stockout of spare parts can lead to offlining a 

production process and/or lost sales, with significant resulting costs. In general, when the cost of consequences 

associated with failure is high, and one cannot accurately forecast when and in what quantities requirements will arise, 

large quantities of parts tend to be stockpiled in inventory. In the nuclear sector large inventories are often justified as 

essential for safety. However, in a deregulated market, lost revenue and costs are the inventory drivers, as safe 

operation of the plant is taken as a given. In fact, safety systems at modern plants are very sophisticated, either reducing 

power output or shutting down a plant in danger. In practice, operational spares exist in a deregulated market to ensure 

that the plant never shuts down for unplanned reasons, because the resulting costs and lost revenues can be very high. 

Given this fact, the industry can benefit from a rigorous and systematic spare parts inventory management 

methodology.   

This paper addresses the management of spare parts inventory in environments such as the one described 

above. To test the approach proposed herein, we use the case of electric utilities that operate a diverse set of power 

generation and transmission assets in a dynamic, deregulated environment. Some form of deregulation is or has been 
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active in twenty-two states and the District of Columbia [52]. Deregulation began in the 1990s through the Energy 

Policy Act and FERC Order 888 [17], [19]. Specifically, in a deregulated system the generation portion of the utility 

business is market-driven, but the transmission and distribution portions remain regulated by the state in which the 

utility is operating to ensure that power is equitably delivered to all consumers. Before deregulation, electricity prices 

were set after legal hearings and negotiation between the utilities and state regulatory bodies; a traditional market did 

not exist. The regulated electricity rate included full cost recovery plus a rate of return that could be as high as 10% 

[36]. We develop a four-step methodology for a deregulated environment and illustrate it through a case study at a 

nuclear plant in a Fortune 200 utility company’s generation portfolio.   

 A prerequisite for a good inventory control system is an accurate characterization of demand. However, 

because spares are typically used intermittently, this can be a challenge. In particular, the nuclear industry experiences 

part demands very sporadically, and parts might be demanded only a couple of times over a multi-year period. This 

precludes the use of typical time-series based tools to forecast demand. There has been some research that focuses 

specifically on forecasting with intermittent demand, such as Croston [13], Syntetos and Boylan [47], Boylan and 

Syntetos [10], and Altay, Rudisill and Litteral [5]. However, if part demand is extremely sparse as in the case with 

nuclear spares, these methods do not work well, and a different approach is needed to address management of such 

parts.  

One alternative might be a causal model to characterize demand as a function of some suitable set of drivers 

that are treated as the independent variables [31]. However, this requires accurate and detailed data on part reliabilities 

and specific causes for their failures; as noted in [29], such information is not commonly available. Detailed failure 

rates are typically not tracked accurately; rather the industry uses an aggressive preventive maintenance (PM) schedule 

as a way to thwart failures. While the PM schedule prescribes when to perform maintenance, it does not specify how 

involved the work might be. Wear and tear may vary between maintenance sessions, and parts could be in varying 

conditions, leading to both considerable variability in the amount of maintenance work required and uncertainty in the 

corresponding spare parts needed. In addition, nuclear parts are generally unique, customized, and engineered-to-order 

with long lead times and restrictive vendor returns. Maintenance technicians often do not know the extent of work to 

be done until the job commences, and as was common in the regulated era, overcompensation occurs by ordering lots 

of additional parts up front so that any degree of repair could be addressed. 
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Research on spare parts under the above conditions is limited. The seminal survey on spare parts [29] 

provides references to literature up to the early 2000s and identifies future research needs, including the impact of 

increased technology and better prediction of spare parts demand. However, that and other papers on spare parts that 

review the literature (e.g., [26], [32]) do not point to work that addresses the class of parts that satisfy all the conditions 

outlined above. Other relevant papers of note include Bachman [6], who examined the tradeoffs of wait time, order 

frequency, and inventory value but not risk and safety, and a series of papers by Wang and co-authors [55–58], [60], 

which examine nuclear spare parts and use an artificial neural network to formulate an inventory system based on 

economic order quantities (EOQ). However, the EOQ assumes steady demand, and when demand is sporadic (such 

as for the parts under consideration), it is not an appropriate option. Cavalieri, Garetti, Macchi, and Pinto [11] develop 

a decision making framework for spare parts that relies on forecasts of part demand, which is not an option with 

nuclear spares. Finally, in a very recent paper, Molenaers, Baets, Pintelon, and Waeyenbergh [30] develop a 

multicriteria spare parts classification model that considers equipment criticality, probability of failure, replenishment 

time, number of suppliers, technical specifications, and maintenance type; they apply the model to a petrochemical 

plant. This work has several parallels to ours in that it also uses a multi-criteria approach to criticality classification 

based on the Analytic Hierarchy Process (AHP), which is similar to the second and third steps of our approach. 

However, the criteria for a petrochemical plant are different from those in the nuclear sector. Furthermore, the authors 

do not explicitly consider intermittent demand and use logic decision diagrams rather than influence diagrams. More 

importantly, the focus is on computing criticality scores; explicit inventory control policies based on the criticality 

indices are not developed. 

The four-step approach described in this paper is general enough so that other utility plants, especially those 

in the nuclear sector, will be able to apply it. In addition to regulated utilities, other industries, such as aerospace and 

the military, could also benefit from this methodology. In general, many companies, especially utilities, need to 

balance new growth, modernization, obsolescence, reliability, and regulatory requirements. A model that addresses 

these in the context of spare parts inventory has the potential to greatly improve operations and strengthen companies’ 

bottom lines. 

Overview of the Nuclear Power Sector Environment 

 Although deregulation has changed the environment in which companies operate, a 

reengineering of the associated business processes has not been quick to occur. In particular, 



6 
 

deregulation requires a shift in business processes and a redefinition of the management 

philosophy for spare parts. Under regulation, spare parts costs could readily be recovered by 

passing them to customers in the form of higher electricity rates negotiated with the states, but no 

such guarantee of recovery exists under the deregulated model, as spare parts are considered a 

generation expense. Furthermore, spare parts held in inventory tie up capital that could be spent 

on other company initiatives, such as investment in infrastructure.     

On the other hand, a balance must also be maintained between reduced levels of spares and 

the risk of significant loss of revenue. For parts used at so-called LCO (limited condition of 

operation) locations, a failure compromises plant safety and must be remedied within a relatively 

short time (usually 72 hours), or the plant must be offlined or derated. (Once up and running, 

nuclear plants typically operate at 100% capacity, and a “derate” reduces the plant’s output to some 

fraction of its capacity.) In a deregulated environment, loss of generation output translates to a loss 

of revenue, which impacts profitability. Thus, holding strategic inventory can definitely hedge 

against the possibility of significant revenue loss. While spare parts management could be 

addressed internally as a series of operational process initiatives, a more strategic issue is at hand; 

Scala [42] argues that a need exists for better understanding of what parts to order, when they 

should be ordered, and in what quantities.   

Because of the inability to accurately quantify demand for spare parts, addressing the 

objective of preventing stockouts when responding to part failure or a PM request is a challenge. 

The fundamental tradeoff is between reducing capital investments in spare parts inventory and 

having to postpone maintenance or repair work due to unavailability of parts, which in turn implies 

a potential loss of revenue. In a competitive environment, it is crucial that any policy must mitigate 
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the risk of stockout and consequent revenue loss, while ensuring the safe operation of the plant 

and minimizing parts on hand.    

Given the challenges inherent in this problem, this paper develops a four-part decision 

analysis methodology for managing spare parts. The methodology defines and calculates the 

inventory criticality of a part while also considering the risk of stockout in order to improve 

inventory management. It has high practical value because a decision-analytic, engineering 

management approach is taken, which allows for personnel with non-technical backgrounds or 

little inventory modeling experience to actively contribute to the model development in a 

meaningful way. The methodology is valuable to both the body of knowledge related to spare parts 

management as well as the growing research on deregulated electric utilities.   

Methodology 

This research takes an engineering management approach to spare parts inventory 

management and is focused on practice in the deregulated energy sector. It incorporates all relevant 

factors and forces in the spare parts process, while eliminating the need for theoretical assumptions 

that might be required to build a traditional mathematical model. The approach develops a part 

scoring system that rates the importance of keeping an individual part in inventory, which is used 

to develop criticality groups. While this is analogous to a traditional A-B-C analysis for part 

classification, the usual criterion of dollar-volume is inappropriate in the environment being 

addressed. The literature has argued that many criteria are relevant when classifying inventory 

[20], [21], [33], [34], [38], [61]. There are also several inventory classification papers in the 

literature, including [7], [22], [49], as well as inventory management review papers that discuss 

classification [26], [37]. Textbooks, such as [23], present A-B-C policies in detail. Our new scoring 

system provides an alternative for spare parts classification. The approach then develops a 
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modified base stock inventory stocking policy that is based on a retrospective simulation approach 

and balances the risk of revenue loss against capital investments in inventory. The following four-

step methodology is used: 

1. Development of an influence diagram of the spare parts process to identify relevant factors. 

2. Use of the Analytic Hierarchy Process (AHP) to rank influences. 

3. Development of a part criticality scoring system for spare parts classification. 

4. Construction of inventory policies for classes of parts based on retrospective simulations. 

Each step of the methodology is detailed in the following sections. 

Step 1: Development of an influence diagram of the spare parts process to identify relevant 

factors 

An influence diagram is a standard engineering management technique and is commonly 

used to identify and understand a problem by pictorially depicting all influences that are relevant. 

Square boxes depict influences that are deterministic or decisions while ovals or circles depict 

influences that are stochastic or uncontrollable. A directed arc between two nodes denotes that one 

node influences the other. Influence diagrams are easy to construct, and because they are visual, 

the decision maker can easily understand all the inputs to the problem, regardless of technical 

background. As a result, the diagrams are commonly developed as a collaborative effort between 

the decision maker and an analyst. For a detailed discussion of the theory of influence diagrams, 

see [24]. Influence diagrams have been widely used, and examples in the literature include [3], 

[15], [16], [27], [35], [45].  

A full understanding of the problem and process is necessary for the developed model to 

address and incorporate all variables relevant to spare parts management. An influence diagram 

maps these variables and the relationships between them. It captures corporate knowledge of the 
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process, is crucial to the engineering management approach, and serves as a basis for continuous 

improvement. For this research, the influence diagram depicts the current spare parts process and 

identifies all influences that are relevant to the process, providing a clear picture of the “as-is” 

process. Because spare parts are more than just a supply chain consideration, the diagram also 

allows for input from other plant departments, such as maintenance and planning.     

The influence diagram was developed through an interactive and iterative process with the 

subject matter experts (SMEs) at the nuclear power generation case study facility. A list of 

possible, observed influences to the process was defined and presented to the SMEs who removed 

non-relevant influences while adding others. The influences were then consolidated into logical 

sets, with the SMEs providing verification and validation, so that all influences associated with a 

particular knowledge area were placed into a single set. Grouping influences into sets is common; 

for an example the reader is referred to [3]. This process of influence definition and placement into 

sets was repeated iteratively until all SMEs could agree with the process influence list and 

corresponding set placements. Discussions with the SMEs took place via conference calls and 

email correspondence. A total of five SMEs participated in the validation of the influence diagram; 

four of the SMEs held supervisory or managerial positions. 

Overall, 34 influences were identified in the spare parts process and subsequently grouped 

into seven sets: Timeliness of Work Order, Part Failure, Vendor Availability, Part Usage in Plant, 

Preventive Maintenance Schedule, Outage Usage, and Cost Consequences. Each set focuses on a 

common theme. Details of each set including a listing of the influences placed within each one can 

be found in Scala [42]. Each individual influence was assigned to one set, and Figure 1 shows the 

diagram for the overall sets of influences. Each influence set generates a subdiagram, and an 
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example (Set 5: Preventive Maintenance Schedule) is also shown in Figure 1. The other influence 

sets connect to the main diagram in a similar fashion. 

The cultures at nuclear electricity generation facilities are very risk averse. Although 

various companies operate nuclear reactors for electricity generation, the work ethic and basic 

procedures are consistent across the United States nuclear fleet. Thus, an influence diagram of the 

nuclear spare parts process is applicable to the industry at large and can be used with other decision 

making processes related to inventory and maintenance. Furthermore, when generalizing the 

methodology, the process for the nuclear spare parts can be easily followed. 

Step 2: Use of the AHP to rank influences 

The second step of the methodology is to rank the influences on the diagram, which is achieved through 

group decision making in the AHP. The AHP is a decision analysis tool developed by Thomas Saaty [39], [40]. It is 

a widely used and popular method that has been extensively explored in the literature. Examples of applications 

include politics, technology, marketing, material handling, conflict resolution, and medicine and are summarized in 

[46], [53], [54], [59]. The AHP uses pairwise comparisons between criteria with respect to the goal and between 

alternatives with respect to each criterion. Analytically synthesizing the comparisons yields normalized prioritized 

alternatives; the normalized values can also be used as weights beyond a rank ordered list.  
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Figure 1. High level influence diagram with subdiagram detail for set 5 (Adapted from [42], 

[43]) 

 

The AHP is used to determine relative importance of each influence in every influence set on the diagram. 

The resulting priorities from synthesizing the pairwise comparisons then serve as weights for each influence. In this 

research, each set of influences was set up in its own two-level hierarchy, with a goal of spare parts analysis and the 

set influences in the second level. Figure 2 depicts the hierarchy for the “PM Schedule” set of influences.  
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Figure 2. AHP hierarchy for the PM Schedule influence set 

The pairwise comparisons were then done with respect to the goal. Thus, for PM Schedule all six possible 

pairwise comparisons were performed between the four influences in the set. To accurately represent the full nuclear 

spare parts process beyond just the storage of parts, multiple judgments of the pairwise comparisons were elicited; in 

particular, five unique industry SMEs performed the comparisons for the influences in each set. These individuals are 

experts in the influence set knowledge area to which they were assigned and were geographically dispersed at different 

locations within the parent company’s footprint. The judgments were collected individually from each SME and each 

set to avoid any bias and ensure that one individual’s judgments were not influenced by those of another. Furthermore, 

because industry SMEs from various nuclear plants (not just the test bed facility) were interviewed, the individual 

interviews allowed for full range of knowledge and unique perspectives to be collected. After the interview, the 

judgments were reviewed, and if the AHP inconsistency was too high (greater than 0.20), a follow-up interview was 

done with the SME. In that session, SMEs were asked to revisit and revise judgments until the inconsistency ratio fell 

below 0.20. Saaty [39], [40] suggests an acceptable inconsistency ratio at or below 0.10; however, because these 

judgments were to be combined, a higher individual inconsistency ratio was empirically allowed. During the follow-

up call, although some SMEs did choose to revise judgments, others chose not to revise, and not all sets of pairwise 

comparisons fell below our inconsistency threshold. 

In all, 25 SMEs performed comparisons, with five sets of pairwise comparisons collected for each influence 

set. The seven sets themselves were also compared by five SMEs. Some SMEs had knowledge of multiple areas and 

performed pairwise comparisons on more than one set. For an example of employee responses (original and revised) 

as well as a detailed interview protocol, the reader is referred to Scala [42].   
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 Because multiple judgments were made, for each influence set the pairwise comparisons must be aggregated 

into one set of judgments that are representative of the five SMEs. This aggregated set of judgments can then be 

synthesized to weight the influences. Traditionally, a weighted or non-weighted geometric mean is used to aggregate 

judgments in the AHP [1], [2]. However, recent work by Saaty and Vargas [41] recommends a rigorous statistical test 

to ensure the aggregated group judgments do not have excessive dispersion around the geometric mean. In that case, 

the pairwise comparisons would be homogeneous in some responses and heterogeneous in others, which violates the 

axioms of the AHP. Dispersion tests were thus performed on the eight groups of pairwise comparisons—the seven 

influence sets as well as the overall set of influences. The test was performed for every set of pairwise comparisons; 

for example six separate tests were performed for the PM schedule set in Figure 1. For these data, the Saaty and Vargas 

[41] dispersion test failed for most influence comparisons (except for set 7), implying excessive dispersion. These 

comparisons therefore cannot be aggregated using a simple non-weighted geometric mean in this situation.   

When this happens, the literature directs the decision maker to go back to the SMEs and ask them to revise 

their judgments or work together to reach consensus [1], [2], [8], [9], [41]. However, because in our case the decision 

makers were geographically dispersed, it was not feasible to gather all the SMEs in one location to force consensus. 

Each SME had a separate follow-up interview, but most of them were unwilling to revise their original judgments. 

Thus, the dispersion could not be reduced to an acceptable level. To aggregate the judgments, a weighted geometric 

mean was therefore used so as to account for the inherent variability associated with each judge. The corresponding 

weights were derived by a novel approach using principal components analysis (PCA). This method does not violate 

the axioms of the AHP and allows for variance around the geometric mean to be accounted for through the first 

principal eigenvector. In the PCA method, each decision maker is a variable or “dimension,” and each judgment is an 

observation. For example, for the PM Schedule set, the PCA matrix will have five columns (one for each decision 

maker) and six rows (one for each pairwise comparison); thus we have five dimensions with six sets of observations 

across each. The first principal eigenvector of the corresponding 5´5 covariance matrix is then computed, with the 

result being a vector of five weights, one for each decision maker to be used when combining the judgments through 

a weighted geometric mean. The first principal eigenvector captures maximum variability by definition, and the 

resulting weights sum to one. Further details of this method can be found in Scala [42].   

 Once the judgments of the five SMEs were aggregated into one representative group judgment, the AHP 

priorities were found for all influences by synthesizing the aggregated judgments in each set. Ranking the influences 
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allows for a weight to be assigned to each influence. This weight depicts the relative importance of that influence with 

respect to the other influences in the set and is the primary benefit of the AHP process employed in this methodology. 

A secondary benefit is that the relative weights are valuable to the test bed company beyond spare parts management. 

The nuclear workforce is very experienced, with a recent study citing eleven to fifty percent soon eligible to retire 

[51]. Capturing the workforce’s extensive knowledge of the process is not only important but also invaluable to the 

industry. Thus, this approach formally captures the as-is nuclear spare parts process and how employees approach 

spare parts decisions as well as the corresponding risk of those decisions, which will mitigate the loss of knowledge 

due to employee attrition. This approach can be repeated to capture knowledge at other companies; here, the test bed 

company is used to illustrate the approach. This knowledge from decision makers can be applied to other company 

decisions and passed down to a new generation of nuclear employees to assimilate them into corporate culture. 

Step 3: Development of a part criticality scoring system for spare parts classification 

The third step of the methodology is the development of part criticality scores to identify the importance of 

keeping a part on hand in inventory. Inventory criticality should not be confused with engineering criticality; the latter 

is a standard nuclear industry classification of part maintenance schedule. Engineering criticality is not tied to 

inventory and prescribes if a part should receive preventive maintenance or if it is a run-to-failure part. Inventory 

criticality purely considers the need to keep parts on the shelf. Here inventory criticality scores are built from the AHP 

prioritization weights and historical part data. The developed scores are then used to classify parts into criticality 

groups for inventory management. Using the AHP is common in developing classifications and is addressed or 

demonstrated in [7], [20], [22], [34], and [37]. At the test bed company, part data is stored in its Enterprise Resource 

Planning (ERP) system and captures each part’s use, maintenance schedule, etc. Each influence can be supported by 

various data fields, and the data in those fields are incorporated into the part criticality score. To provide consistency 

across the scores, the part data for each influence is converted to a unitless 1 to 5 scale. This ensures that various 

ranges and scales of data are considered uniformly. An example of a scale conversion is shown in Table 1 for influence 

5.1: “PM done on related component.”   

The related part data in this instance is a count of preventive maintenance work orders on which the part was 

requested. A higher count implies more activity, implying increased importance or criticality for the part. An analysis 

of the ERP data showed a maximum of 84 preventive maintenance work orders across a sample of parts at the test bed 

company. Thus, the range of 0 to 85 (rounded) work orders must be mapped to the 1-5 scale, as shown in Table 1. The 
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“Assigned Scale Value” is the dimensionless ordinal value, with a value of 5 implying highest criticality. The “Low 

Value Based on Part Data” corresponding to an “Assigned Scale Value” is the lowest count of work orders assigned 

to that value, while the “High Value Based on Part Data” is the highest count of work orders assigned to it. The 

mapping of data to a scale can be done in a variety of ways; in this case, the data was mapped with feedback and 

validation from the test bed company SMEs. 

Table 1.  Assignment of part data to scale for influence 5.1 

Low Value Based 

on Part Data 

High Value Based 

on Part Data 

Assigned Scale 

Value 

 

71 85 5  

41 70 4  

13 40 3  

1 12 2  

0 0 1  

 

In general, all scale units 1-5 do not need to be assigned to the corresponding part data for an influence. The 

scale is dimensionless and unitless, and part data is mapped as appropriate. The mapping is inherently subjective; 

however, assistance from company SMEs will help to determine the most critical data (assigned to scale value 5) and 

the least critical data (assigned to scale value 1). If part data does not exist for an influence, then a value of 0 is assigned 

for all parts, with the recommendation that the company begin tracking data relevant to that influence. 

Once the data is mapped to the ordinal scale, criticality scoring equations determine the inventory importance 

of each part. First, a subscore is developed for each part with respect to each influence set on the influence diagram. 

To obtain this subscore, the part characteristic data for an influence mapped to the ordinal scale for part j is multiplied 

by a weight calculated by the AHP priority for that influence. These products are then summed across all the influences 

in that set. Equation (1) describes the approach: 

𝑆𝑒𝑡	𝑘	𝑠𝑢𝑏𝑠𝑐𝑜𝑟𝑒 = 	𝑔!,# = ∑ /𝑝!,$ ∗ 𝑑!,$,#3$ 	∀	𝑗    (1) 
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where pk,i is the AHP priority for influence i within set k and dk,i,j is the ordinal scale characteristic data for part j 

corresponding to influence i within set k. For the nuclear spare parts influence diagram, a subscore is found with 

respect to each influence set (i.e., 7 subscores in all for each part). These subscores are then combined with the priority 

weight for each set of influences and aggregated to yield an overall part criticality score; this is done via equation (2):  

𝑃𝑎𝑟𝑡	𝑠𝑐𝑜𝑟𝑒 = 	 𝑠# = ∑ /𝑝! ∗ 𝑔!,#3!      (2) 

where pk is the AHP priority for set k and gk,j is the subscore for set k and part j. The end result is a single criticality 

score for each part. For more details and an example, the reader is referred to Scala, Rajgopal, and Needy [44]. 

 Once all parts are scored, they must be placed into groups for inventory management. In this research, parts 

were assigned to clusters based on the calculated criticality scores using the k-means algorithm. This is a standard 

cluster analysis technique which starts with an initial set of cluster centroids and assigns data points to the cluster with 

the closest centroid. The centroids are then recalculated, and data are reassigned based on the new values.  This process 

is repeated until the clusters converge. For further details regarding the algorithm, see [18] or [48].  

 While other grouping techniques could certainly be used, the k-means method is easy to implement and 

straightforward to understand, while providing good results. To determine the number of groups, 200 sample parts 

from the test bed company were selected, and criticality scores were computed. The scores were then graphed in a 

histogram, and three natural breaks occurred in the data, suggesting three groups or levels of criticality. The k-means 

algorithm verified the break points between the groups in the data. 

For the case study company sample data, after k-means analysis, 21 parts were placed in Group I, 38 parts 

were placed in Group II, and 141 parts were placed in Group III. Group I parts have the highest criticality scores, 

implying those parts are most inventory critical, while Group III parts have the lowest scores and are not of great 

inventory management importance. Group II parts are of moderate inventory importance. Figure 3 shows a histogram 

of part scores and the corresponding criticality groups. 

Once the parts were grouped, an inventory management policy must be defined for every group. The last step 

of the methodology details this process. 

Step 4: Construction of inventory policies for classes of parts based on retrospective 

simulations 
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 The fourth step of the methodology develops a modified base stock inventory policy for each part group via 

retrospective simulation using historical data. Results from the simulation yield a set of policies that can balance the 

cost of base stock inventory against delayed work days per part per month. The final policy to manage inventory can 

then be selected by the decision makers based on their risk tolerance profiles. Inventory control with intermittent 

demand has been discussed in the literature; review papers include [26], [29] and [32]. Recent papers for intermittent 

demand include Teunter, Syntetos, and Babai [50], who develop a policy based on a compound binomial process for 

demand; Chang, Chou, and Huang [12], who develop a stochastic continually reviewed constant reorder policy based 

on criticality; and Dekker, Kleijn, and de Rooij [14], who develop a stocking policy reserving stock for critical demand 

but assume critical and non-critical demand follows a Poisson process. However, as we have seen, for this class of 

parts, a demand process cannot be determined, and the intermittent nature of parts prohibits accurate calculation of a 

consistent reorder point. As a result, we develop a base stock policy to manage nuclear spare parts inventory. 

 

Figure 3. Histogram of part scores and criticality groups (Adapted from [42], [44]) 

Base stock inventory policies are continuous review policies that are predicated on always maintaining an 

inventory position equal to some “base stock” level. This level is typically set so that enough inventory is held to cover 

expected demand during the lead time (plus some safety stock that is proportional to the standard deviation of lead 

time demand). Inventory levels are depleted only when a demand occurs, and replacement orders are placed after each 

demand occasion for the amount demanded. When demand occurs in unit quantities and the lead time equals zero, a 

base stock policy is equivalent to a continuous review (s,S) policy, with s = S–1. Discussions on base stock inventory 
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policies may be found in texts such as [25] and [28]; the literature has also shown [4] that (s,S) policies are appropriate 

for intermittent demand items. These policies are inherently conservative and suited to situations where items are 

expensive and demand is intermittent as in the nuclear power generation sector.   

 Because base stock policies are based on holding enough inventory to cover demand during lead time, a 

distribution for such demand is necessary to implement the policy. However, this is virtually impossible to determine 

for nuclear parts due to the extremely intermittent nature of demand, the lack of consistent demand patterns across 

parts in a group, and the absence of statistical data on failure rates in this sector. As a result, any base stock policy for 

nuclear spares must be modified using something other than a probability distribution of lead time demand. Our 

approach was to look at demand occasions over time and estimate how much was demanded on each occasion because 

these values are independent of time and relatively easy to measure. 

 To do this we developed a retrospective numerical simulation that examines 2,618 days (over 7 years) of 

historical demand occurrences for each part in our test bed sample set with different multiples of average demand per 

occurrence (i.e., per plant request) considered as potential base stock inventory positions. The average demand per 

plant request is defined as the average number requested by the plant across all historical work orders for each part. 

This demand calculation must also account for part returns of unused parts to the warehouse in order to estimate the 

actual demand. Details on our approach may be found in Scala [42]. Essentially, through analysis of the historical 

data, a value 𝑧! was calculated for each part j in the sample set, where 𝑧! denotes the typical quantity used by the plant 

for each work order or request for parts.   

 The historical numerical simulation outputs a series of potential base stock policies, with each policy 

identified by the number of parts to keep on the shelf, the cost of the corresponding inventory, and the associated 

delays in work (if any) that would have been historically experienced had that policy been in effect. Recall that the 

simulation is historical, so we are evaluating potential policies against a previous demand pattern, which we are 

assuming can also be expected in the future. The selected base stock policy is the simulated policy that calls for a base 

stock level that is some multiple of the average demand per request and that would have resulted in the minimum 

number of work days delayed due to unavailability of parts over the period considered. The simulation tests various 

multiples of average demand; specifically, multiples from 0 up to 50 in increments of 0.5. We denote this multiplier 

value of average demand by b. The upper bound of 50 (5,000% of average demand per request) is of course unrealistic 

in practice but was selected so that the point at which a 100% service rate is obtained could be determined for any 
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part. The simulation tracks missed days at both LCO and non-LCO locations for every value of b as well as the 

corresponding inventory investment cost. Recall that failure of parts installed at LCO locations can cause the plant to 

shut down or derate if the situation is not remedied in a specified time window. Table 2 illustrates simulation results 

for one of the part groups (Group II). For every part in group 2, 𝑏 ∗ 𝑧! would be the quantity to store on the shelf. 

Similar results were obtained for the other groups as well; details of which may be found in Scala [42]. Figures 4, 5, 

and 6 show the relationships between b, cost, average non-LCO missed days, and average LCO missed days. 

Table 2 indicates that in order to completely eliminate LCO missed days along with any possibility of a derate 

or shutdown due to lack of parts, the test bed company should have stored 11 times the average demand per plant 

request for the LCO parts in the group. While this would also greatly reduce delaying work days at non-LCO locations, 

it would not have completely eliminated them. To do so for the non-LCO parts in the group, the company would have 

had to store 22.5 times the average demand per plant request. In all cases, the simulation also yields the exact values 

of these inventory levels for all parts as well as dollar investments for both types of parts in the group (although Table 

2 only shows totals across both types for a fixed multiple). 

Table 2. Historical simulation results for group II [42] 

b Cost 

Avg. Non-

LCO Missed 

Avg. LCO 

Missed b Cost 

Avg. Non-

LCO 

Missed 

Avg. LCO 

Missed 

0 $       -    2.673 0.08 11.5 $768,612.93  0.022 0 

0.5 $42,013.52  1.309 0.013 12 $786,552.71  0.022 0 

1 $73,660.13  0.930 0.013 12.5 $827,751.42  0.022 0 

1.5 $110,914.38  0.833 0.013 13 $859,378.28  0.022 0 

2 $133,346.48  0.707 0.013 13.5 $896,871.17  0.018 0 

2.5 $174,322.45  0.631 0.013 14 $919,084.38  0.018 0 

3 $202,114.73  0.334 0.013 14.5 $959,933.49  0.018 0 

3.5 $243,222.84  0.186 0.013 15 $987,815.27  0.018 0 

4 $265,655.41  0.186 0.013 15.5 $1,028,606.41  0.018 0 

4.5 $302,650.19  0.180 0.013 16 $1,050,910.16  0.018 0 
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5 $334,403.91  0.172 0.013 16.5 $1,087,855.19  0.018 0 

5.5 $375,478.33  0.168 0.013 17 $1,120,369.64  0.01 0 

6 $394,140.01  0.168 0.013 17.5 $1,161,198.62  0.01 0 

6.5 $434,939.37  0.168 0.013 18 $1,179,058.11  0.01 0 

7 $467,095.62  0.168 0.013 18.5 $1,220,194.12  0.01 0 

7.5 $503,621.32  0.163 0.013 19 $1,252,539.73  0.002 0 

8 $525,935.79  0.163 0.013 19.5 $1,289,499.51  0.002 0 

8.5 $566,998.61  0.163 0.013 20 $1,311,367.04  0.002 0 

9 $594,516.71  0.138 0.009 20.5 $1,352,797.05  0.002 0 

9.5 $636,384.29  0.110 0.009 21 $1,380,719.61  0.002 0 

10 $658,171.53  0.106 0.009 21.5 $1,422,248.38  0.002 0 

10.5 $695,209.03  0.098 0.009 22 $1,444,069.47  0.002 0 

11 $727,089.10  0.055 0 22.5 $1,480,581.88  0 0 

 

 

Figure 4. b vs. cost 
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Figure 5. b vs. average non-LCO missed days 

 

 

Figure 6. b vs. average LCO missed days 

Costs of delaying work at LCO locations can be substantial (approximately $500,000 to $1,000,000 per day), 

depending on the size of plant and price of power, and failures at LCO locations can lead to plant shutdowns or derates, 

which cause a loss of revenue in a deregulated market [42]. Determining costs at non-LCO locations is trickier, as 

penalties associated with delaying work at these locations are not currently tracked by the test bed company. As a 

result, reducing the non-LCO days to zero may not be necessary, and the test bed company might be comfortable with 

permitting some work days delayed at non-LCO locations in exchange for inventory cost savings. The final decision 

rests with the decision maker at the test bed facility and is associated with the decision maker’s tolerance for risk. 
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  In sum, the methodology and corresponding policies presented are not prescriptive but rather a guideline for 

decision makers to support trading-off the appropriate risk of delaying work versus the capital cost of inventory, based 

on their own risk profile. Determining the important parts helps to buffer the risk of revenue loss associated with plant 

derate or shutdown, which results from an emergent situation that compromises the plant with parts not immediately 

available to remedy the issue. Through this methodology, the company may focus on and provide resources to the 

most important parts for inventory management. 

The approach outlined in step 4 can be extended to any situation where lead time demand is small, 

intermittent, and cannot be characterized by a probability distribution. It should also be noted that we chose to examine 

multiples of the mean value corresponding to each demand occasion; other measures such as the mode or the median 

could also be used. Such situations would typically arise in spare parts problems, such as nuclear generation, aircraft 

engines, and ground space systems, but may also arise in new product development or a job shop environment where 

little but highly unique inventory is held. 

Summary and Future Research 

This research details a four-step methodology for managing spare parts in the nuclear electricity generation 

industry, utilizing actual data from a test bed company for illustration. The models developed in this research address 

the new competitive business environment in which many utilities are now operating and were verified and validated 

through real data. They can be readily adapted to other utilities to build decision support tools that can allow 

management decision makers to perform what-if analyses to assess the tradeoffs of their decisions to balance risk, 

safety, and costs. The methodology could also be generalized to other industries, such as aerospace and the military. 

It is possible for a company to use the entire methodology or just individual portions of it in order to develop its own 

influence diagram, AHP prioritized weights, criticality scores, and/or corresponding inventory policies. To our 

knowledge, no such integrated methodology for spare parts has been previously developed nor has one used all the 

techniques outlined here together in an integrated fashion. 

 Overall, the methodology is easy-to-use and implementable, without mathematical assumptions, allowing 

operational employees to work with and update the models. Employees who understand their work and can contribute 

to decision making will inevitably take ownership, leading to a higher probability of successful, sustained 

implementation and deeper employee engagement.   
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 A natural extension of this work is the application of the methodology to nuclear spare parts suppliers. Each 

nuclear plant in the United States is uniquely designed, and suppliers provide customized support and parts to the 

plants they build. If suppliers have a better understanding of when parts will be ordered by plants, then intermittent 

demands at the supplier could be better managed, leading to reduced part lead time. Better management of demands 

and inventory at the supplier end would enable better response and improved servicing of nuclear plants, with both 

parties (suppliers and plants) operating under the same philosophy and similar methodologies for spare parts 

management.    

A second extension would be to explore the development of utility functions for both average missed days 

per part per month and the cost of base stock inventory by interfacing with the subject matter experts. These functions 

would provide further analysis and depth to the inventory policy simulation results and support quantitative 

identification of the optimal base stock policy. 

In conclusion, the conditions of intermittent demand, lack of failure rates, and limited data present a challenge 

for managing spare parts. In future research we plan to explore other opportunities to improve spare parts inventory 

management, especially at nuclear facilities, under these conditions.   
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